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Window effect in a discretized model for diffusion of a chain in one dimension
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We introduce a model to study the diffusion of chains in microporous solids. The difficulties a chain has to
escape from a pore where it is confined is found to strongly depend on the ratio between the chain length and
the cage size. This dynamic effect implies a nonstandard behavior of the diffusion coefficient. We found a
window effect that can be explained without using any energy argument.

DOI: 10.1103/PhysRevE.71.021103 PACS nuni$)er05.40.Jc, 66.10.Cb, 66.36h, 47.55.Mh

I. INTRODUCTION length of the molecule is an integer of the length of the
The diffusion coefficient in solids containing regular suc-"€P€ating structural unit of the solid. More recently, Dubbel-
cessions of cells or pores has been the subject of study féfamet al. were motivated to quantitatively explain the win-
years. If the solid presents pores comparable in size to thdow effect with a molecular simulation method for different
diffusing molecules, the diffusion is strongly influenced by types of zeolite$10-12. Simulations show that the window
the interactions between molecules and walls of the solideffect is a very generic effect that can be found in an entire
This diffusional regime is known as configurational, a re-class of zeolites.
gime in which the diffusing molecules never escape the force In this work, we introduced a discretized model for a
field of the surrounding crystal. This is the situation in thechain diffusing in one dimension that presents the window
diffusion of normal paraffins in the intracrystalline space ofeffect. However, differing with previous work, a window ef-
zeolites and will be the subject of the present witi2]. fect appears without using any energy argument but as a
There are many unexpected and interesting phenomena @ionsequence of the entropic difficulty that a chain has to
zeolite diffusion and reactiofi3—6]. In 1973 Gorring re- escape from a pore where it is confined.
ported a phenomenon, the window effect, whereby the diffu-
sivities of normal paraffins within zeolitéE do not decrease Il. MODEL
monotonically with increasing carbon numb¥r as would
be expected7]. Instead, following an initial decrease with ~ Let us consider a chain in a one-dimensional lattice con-
N, the diffusivity exhibits a local minimum followed by a sisting ofN particles that can hop to the nearest site only if
pronounced local maximum. This phenomenon is one of théhis site is empty. There can be only one particle per lattice
best-known wildly unconventional behaviors in diffusion.  site. Particles can hop to the right or left but no more than
The periodic nature of the diffusivity with the carbon one site can be empty between two of them.
number suggests seeking an interpretation in terms of the At each Monte Carlo step, one of tid particles of the
periodic nature of the zeolite lattice. Since the work of Gor-chain is randomly chosen. The following situation may ap-
ring was reported, a number of theoretical studies aimed aiear.
explaining this experimental finding. Ruckenstein and Lee (i) If the selected particle is located at the end of the chain
studied the diffusion of long rigid molecules in solids with and its nearest site is occupied by another particle, the end
successions of channels and cavitjig$ They found that particle jumps with probabilityp,; see Fig. 1a).
diffusion presents maxima when the length of the rod is an (i) If the selected particle is located at the end of the
integer of the length of the repeating structural unit of thechain and its nearest site is empty, the end particle jumps
solid and minima when it is a half integer. Later, Nitsche andwith probabilitypy,; see Fig. 1b).
Wei proposed a model in which zeolileis represented by (iii ) If the selected particle is not an end parti@le., it is
channels connected by narrower nef8k A linear paraffin ~ a middle particl¢ and one of its nearest site is occupied and
molecule can slide along the channel and assume a numb#e other one is empty, the middle particle jumps to the
of positions, with some of the length in cells and some of theempty site with probabilityp,; see Figs. (c) and Xd).
length in necks. The preferred low-energy position for a par- (iv) If the chosen selected particle is a middle particle
affin is that in which most of its length is at cells. Thus, shortwith both nearest sites occupied, or both nearest sites empty,
molecules would prefer to be completely inside a cell as théhe middle particle does not jump and remains at its original
potential energy increases when the paraffin molecule perposition; see Figs. (&) and 1f).
etrates a neck. For a molecule too long to fit entirely within ~ Hence,p,, p,, andp, are the free parameters of the model
a cell part of the paraffin will have to be at a neck. As a(0=<p,,pp,p.=<1). After each Monte Carlo step the time,
consequence, the difference between minimum and maxis increased byt=1/N so that, at a time interval equal to 1,
mum potential energy decreases and can also be zero if tlevery particle has, on average, one chance to be selected.
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n FIG. 3. Schematics showing three cells connected by necks.
Molecule (a) needs to find a neck to escape from the cell that
(b) contains it. Moleculéb) diffuses freely as the neck does not include

any energy interaction with the diffusing molecule.

|
Pc
m minishing the probability for end particles to jump to neigh-
boring pores. An end particle not always finds the neck and
(C) then the chain diffusivity is reduced. Conversely, once an
end particle crosses a neck, the rest of the chain can follow
the leading bead. Due to the crystalline character of zeolites,

Pc
{\ necks, represented as effective barriers, are uniformely dis-

tributed.
I:l:l (d) We have introduced a one-dimensional model that re-
sembles a three-dimensional diffusion in a porous material.
I ] (e) Actually, the diffusing molecule describes a three-
dimensional movement within the pores. Thus, a low prob-
|:| - |:| (f) ability for the chain end to find a neck connecting two pores

is represented by the factbrin the one-dimensional model.

FIG. 1. Jumping probabilities for enf(@),(b)] and middle  This is equivalent to say that there are a larger number of

[(c).d), (e),(F)] particles. In case) and(f) the middle particle, the ~Microstates within the pore than within the neck.
shaded one, cannot jump. We stress that the introduced effective barriers do not cor-

respond to real energy barriers. In particular, the paranmeter
ri]s not related to any energy. It reflects the difficulty that end
particles have to find the channel between pores in order to
move from a pore to the next one. In other words, the origin
of h is due to the effects of the configurational dynamics.
Clearly h plays the role of an effective parameter that takes
into account, in a simple way, the complicated dynamics that
a chain must perform in order to escape from a given pore
eYvhere is confined. This dynamics strongly depends on the
special kind of pores and chains that appear in real systems.
We emphasize that the present work is focused on the under-
standing of a basic mechanism that produces the window
effect and not to reproduce specific experimental results.
Thus the proposed mechanism is described with a Monte
Carlo model having a minimum of assumptions to keep it as

Every time a particle jumps, the center of mass of the chai
moves 1N of the distancea between adjacent lattice sites.
In the following we usea=1. The repetition of the described
procedure simulates the random motion of the chainfie@
space(i.e., without taking into account the effects of pores
This model was introduced in Rédfl3] and the properties of
this free diffusion are summarized below.

In order to incorporate the porous media effect, the mod
is modified as follows. We add to the lattieEective barriers
with periodicityl as shown in Fig. 2. When an end particle is
adjacent to an effective barrier, rule is modified such that
the jumping probability adopts the vallegp,, whereh (0
<h=<1) is a new free parameter of the model. farl, the
free diffusion case is recovered. . .

. : . . . ) . simple as possible.
angh% ﬁ(ljr\?vlijriztﬁnesrtl?lgz Vg;t?hzn;gtggla%;x'?uﬁ)g'%l#;agg?_ In the Monte Carlo simulation the diffusion coefficient of
’ o ! . | .~ the chain center of masB, is calculated through
formed to reach an equilibrium configuration. At this point
the origin of the timescalé=0, is defined. The Monte Carlo
results were obtained averaging over more thahsainples. D = (. )32t (1)

A cellular material can be envisioned as pores connected cm ’

by narrow necks, as depicted in Fig. 3. These necks act di-

where
effective

barriers
Y (3%em)?= D m® = Xe O, @

Xem. IS the position of the center of mass and the brackets

FIG. 2. Periodic effective barriers. The bars represent the effecdenote the ensemble average. .
tive barriers separated by a distaric@he jumping probability of For the case of free diffusioth=1), an analytical ap-
the left end particle isip,. proximation of the diffusion coefficient can be obtairjéd],
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FIG. 4. Trapped and nontrapped configurations. Some examples

of trapped and nontrapped chain configurations are shown.
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In the limit N—-oo this approximation asymptotically con-

verges to the exact value Bf. For the special case when the
relation p,+pp=p. holds, Eq.(3) becomes

- papbpc
N(pa + pp)*’

which is the exact expression &f for all values ofN, N
=2 (for more details see Ref14]).

(4)

PHYSICAL REVIEW E 71, 021103(2005

100 Pon. 0 Onm  Qg@m
o afeme eGP

pN 10

10"F o
> oy B
102} \%’. Hﬁzi?i{nﬂﬂﬁg;w N=24
Ry
o 1 2 8 4 5

A

FIG. 5. The diffusion coefficient of the center of maBs(full
circles, as a function of the adimensional parametefhe Monte
Carlo results were obtained usipg=0.83, p,=0.17,p.=1, andh
=0.1. For comparisob (open squaredor the free diffusion case is
also plotted(i.e., p,=0.83,p,=0.17, p.=1, andh=1). Since in this
case\ has no meanind is plotted against the corresponding val-
ues ofN for the nonfree diffusion case. The solid lines have been
drawn to guide the eye. The inset shows the behavidbf The
straight line corresponds to the analytical resultsDdf obtained
from Eg. (4) for the free diffusion case.

theoretical explanation constitutes an open problem nowa-
days[5]. Other results, not shown in the present work, indi-

We will focus now on the general case with the effectivecate that in our model the window effect is not very sensitive

barriers present. We define arapped configuratiora chain

to the parameterp,, p,, andp., but, as expected, monoto-

configuration in which at least one of the end particles isnously increases as the valuelofs reduced. For example,
adjacent to an effective barrier and its nearest site is occupiettie ratio between diffusivities corresponding to the first
(see Fig. 4. In other words, in a trapped configuration the mamimum and the second minimum-s3.2 for h=0.1 and

jumping probability of one, or both ends, g, We also
define thetrapped chain length,l as the average length of

~15 for h=0.01.
In order to grasp the origin of the window effect in our

the chain for trapped configurations, and the adimensionahodel, we will analyze the chain dynamics in detail. In Fig.
parameten =1/ (i.e., the ratio between the trapped chain7, x. ,, is plotted as function of time for chains with=4, 7,

length and the period of the effective barrjers it will be
shown in the next section is an appropriate parameter to
describe the behavior of the diffusion coefficidént

IIl. RESULTS AND DISCUSIONS

Let us start discussing the capgt p,=p. where Eq.(4)
holds. In Fig. 5 the typical behavior of the diffusion coeffi-
cient, D, as a function of the adimensional parameteis
shown. To compare with, the Monte Carlo resultsDofor
the free diffusion case is also plotted.

For free diffusion,D monotonously decreases as a func-

tion of N; see Eq.(4). To easily check that this is not the

behavior for the case of nonfree diffusion, in Fig. 6 we plot

o2, as a function of timet, for N=5, 6, 7, and 8and the
same values o, p,, P, andh as those used in Fig)5The

values ofD are proportional to the slopes of the straight lines

shown in Fig. 6, see Ed1), and then it is evident that the
error bars in the values @ are much smaller than the am-

plitude of the oscillation shown in Fig. 5. In fact, error bars

in Fig. 5 would be smaller than the symbols used.

and 10 particles. The dashed horizontal straight lines repre-
sent the position of the effective barrigis=10). The values

of the parameterp,, py, P. @andh are the same in all cases.
The values ofN have been chosen in order to have three
different relations between the trapped chain lengthand
I:1,<I, for N=4; |, =, for N=7; and | <l <2, for N
=10. Note that for long periods of time the chain with

2000}
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0 1x10* 2x10* 3x10* 4x10* 5x10* 6x10*
t

FIG. 6. The mean square displacement of the center of mass,
(%..m)? against time for chains dfi=5, 6, 7, and 8 particles. The

Figure 5 clearly indicates that the chain diffusivity pre- values for the parameters of the model age0.83, p,=0.17, p.

sents local maxima around integer valuesaofThis non-
standard behavior shows the so-callgithdow effectwhose

=1, andh=0.1. The straight lines correspond to the least squares fits
of the data.
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0 FIG. 8. Definition of the escape timéy. (@) An example of a
X, chain escaping to the right. According to our definition, the chain
-10 crosses the right barrier when the shaded particle performs the jump
indicated by an arrow. lifb) and(c) two sets of confining barriers
20 are shown. The separation between confining barrigrare 3 (b)

o0 150" 20010" and | (c). With dashed lines initial configurations are depicted.

t Chains escape from the corresponding confinement barriers when
one of the jumping events indicated by arrows occurs. The
definition of the time escape is applied fo< 3, case(b), and\
<1, case(c).

0.0  so0x10°

distancel,=3l, case(b), and by a distancé,=I, case(c).

10 v ‘\ Case(c) can be used fox <1, and caséb) for A <3. Figure
20} 'W'L' 9 shows the escape time as a function\afsing the above-
mentioned two sets of barriers of confinement with the same
-30 5 — — e o values of free parameters as those used in Fig. 5. A strong
A 5.0x10>  1.0x10° 1.5x10" 2.0x10

agreement between the data of Figs. 5 and 9 is clearly seen,
in the sense that the local maxima in the diffusion coefficient
correspond to the location of local minima in the escape

t

FIG. 7. Plots of the position of the center of mass,, as ’
function of time,t, for p,=0.83,p,=0.17,p.=1, andh=0.1,I=10,  UMes. o _ .
and for chains with three different values df N=4 (a), N=7 (b), We will offer a qualitative explanation for the escape time
andN=10 (c). Dashed straight lines represent the positions of thedependence on the chain length fox 1 andl,=I. It is ob-
effective barriers. The corresponding values\ofire A=0.6, for ~ served that fol ~0.5 the escape time is larger than for
N=4 (i.e., I, <I); A=I, for N=7 (i.e., l,=1); A=1.6, for N=10 ~1 (see the inset of Fig.)9When\~1 the chain can be
(e, I<ly<2). confined between two consecutive barriers with both end

) ) ) particles being close to barriers. Thus, both end particles are

=4 appears confined between two adjacent barriers, and the,ry frequently trying to cross the barriers. Conversely, for
chain withN=10 is confined bgtween barriers separated by &pqter chaingh ~ 0.5) only one end particle can be adjacent
distance £ Interestingly, forN=7, X behaves very simi- to a barrier. Then, sinck<<1 it is very likely for ax~0.5

larly to a standard random walks in the case of free diffu- hain to diffuse away from the adiacent barrier. In other
sion). That is, the presence of the effective barriers seem§ y ! '

almost not to affect the movement of the center of mass.

For a quantitative analysis we define scape timgt.g, 1.2¢10°
as the mean time needed for a chain to cross one of the given 1.0d0*F
barriers starting from a given configuration. We say that a
chain crosses a barrier if the adjacent particle to an end par- 8.0x10°r Efc\:

ticle passes the barrier and both particles remain together;

ese 2 \ =] 04 06 08 10
see Fig. 8. In the simulations we use a compressed chain 8040 n/ \ A
(i.e., a chain with length equal td) centered between two 4.0x10°F i I:'\
consecutive barriers as the initial configuration. Note that the 20x10°F N=7 qn);/:\x
definition of the escape time is arbitrary because there are N=12
many ways to consider when a chain crosses a barrier and to 0.05 1 5 3

select the barrier that must be crossed. Also, other initial
configurations can be chosen. However, the general conclu-

A

sions are not expected to depend on the specific definition of FIG. 9. The escape timé,s, as a function ot for 1,=3; see

the escape time.

Fig. 8b). The inset shows the behavior k. for I,=I; see Fig.

In Fig. 8 we depict two possible situations in which bar- 8(c). In both cases data correspondpg=0.83,p,=0.17, p;=1, h
riers confine a chain. Confining barriers are separated by 0.1, and=10. Solid lines were drawn as a guide to the eye.
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words, the chain spends time moving between barriers before IV. CONCLUSIONS
a successful attempt to cross a barrier takes place; see also . . .
Fig. 7). In previous works the window effect was explained based

on particle-pore and particle-particle interactigifefs.[8]
and[9]). In contrast to the explanations presented before, we
show that the window effect that we observe is not due to a
net force acting on the diffusing molecule. The escape time
decreasesor, equivalently, the diffusivity increaseas the
length of the chainl,, becomes equal to an integer of the
distance between effective barriers. In these cases, the chain
: . . . overcomes effective barriers more easily because the number
inset of Fig. 9, it seems that,,, spends more time thefgs I%f attempts per unit time becomes Iazger. This is another

to escape from being between two consecutive barriers. Thsource for the appearance of the window effect. introduced
implies that, after an adjacent particle to an end particle . PP . . '
ith a model as simple as possible that includes only the

crosses a barrier, very likely the chain returns to be confine t rel t rul
again between the same barriers. most relevant rules.
The above reasoning can be easily extended to other val-
ues of A. It is concluded that local minima in the escape
times(and then, local maxima in the diffusion coefficidht
appear when the mean length of the trapped chains is close to This work was partially supported by the CONICEAT-
a multiple integer of the barriers period. genting and the ANPCyT(Grant No. 03-08431, Argentina

For 1,=3l, chains with\ ~1 or A~0.5 have similar be-
haviors to those fol, =1 (see Fig. 9 because when the chain
escapes from the central barriers confinenieaparated by a
distancd), freely diffuses until being confined between other
barriers(or it returns to the central initial positipriThis type
of argument can be used to explain the behaviot.gffor
1<\ <3, shown in Fig. 9. By comparing Fig(d and the
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