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We introduce a model to study the diffusion of chains in microporous solids. The difficulties a chain has to
escape from a pore where it is confined is found to strongly depend on the ratio between the chain length and
the cage size. This dynamic effect implies a nonstandard behavior of the diffusion coefficient. We found a
window effect that can be explained without using any energy argument.
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I. INTRODUCTION

The diffusion coefficient in solids containing regular suc-
cessions of cells or pores has been the subject of study for
years. If the solid presents pores comparable in size to the
diffusing molecules, the diffusion is strongly influenced by
the interactions between molecules and walls of the solid.
This diffusional regime is known as configurational, a re-
gime in which the diffusing molecules never escape the force
field of the surrounding crystal. This is the situation in the
diffusion of normal paraffins in the intracrystalline space of
zeolites and will be the subject of the present workf1,2g.

There are many unexpected and interesting phenomena in
zeolite diffusion and reactionf3–6g. In 1973 Gorring re-
ported a phenomenon, the window effect, whereby the diffu-
sivities of normal paraffins within zeolitesT do not decrease
monotonically with increasing carbon numberN, as would
be expectedf7g. Instead, following an initial decrease with
N, the diffusivity exhibits a local minimum followed by a
pronounced local maximum. This phenomenon is one of the
best-known wildly unconventional behaviors in diffusion.

The periodic nature of the diffusivity with the carbon
number suggests seeking an interpretation in terms of the
periodic nature of the zeolite lattice. Since the work of Gor-
ring was reported, a number of theoretical studies aimed at
explaining this experimental finding. Ruckenstein and Lee
studied the diffusion of long rigid molecules in solids with
successions of channels and cavitiesf8g. They found that
diffusion presents maxima when the length of the rod is an
integer of the length of the repeating structural unit of the
solid and minima when it is a half integer. Later, Nitsche and
Wei proposed a model in which zeoliteT is represented by
channels connected by narrower necksf9g. A linear paraffin
molecule can slide along the channel and assume a number
of positions, with some of the length in cells and some of the
length in necks. The preferred low-energy position for a par-
affin is that in which most of its length is at cells. Thus, short
molecules would prefer to be completely inside a cell as the
potential energy increases when the paraffin molecule pen-
etrates a neck. For a molecule too long to fit entirely within
a cell part of the paraffin will have to be at a neck. As a
consequence, the difference between minimum and maxi-
mum potential energy decreases and can also be zero if the

length of the molecule is an integer of the length of the
repeating structural unit of the solid. More recently, Dubbel-
damet al. were motivated to quantitatively explain the win-
dow effect with a molecular simulation method for different
types of zeolitesf10–12g. Simulations show that the window
effect is a very generic effect that can be found in an entire
class of zeolites.

In this work, we introduced a discretized model for a
chain diffusing in one dimension that presents the window
effect. However, differing with previous work, a window ef-
fect appears without using any energy argument but as a
consequence of the entropic difficulty that a chain has to
escape from a pore where it is confined.

II. MODEL

Let us consider a chain in a one-dimensional lattice con-
sisting ofN particles that can hop to the nearest site only if
this site is empty. There can be only one particle per lattice
site. Particles can hop to the right or left but no more than
one site can be empty between two of them.

At each Monte Carlo step, one of theN particles of the
chain is randomly chosen. The following situation may ap-
pear.

sid If the selected particle is located at the end of the chain
and its nearest site is occupied by another particle, the end
particle jumps with probabilitypa; see Fig. 1sad.

sii d If the selected particle is located at the end of the
chain and its nearest site is empty, the end particle jumps
with probabilitypb; see Fig. 1sbd.

siii d If the selected particle is not an end particlesi.e., it is
a middle particled and one of its nearest site is occupied and
the other one is empty, the middle particle jumps to the
empty site with probabilitypc; see Figs. 1scd and 1sdd.

sivd If the chosen selected particle is a middle particle
with both nearest sites occupied, or both nearest sites empty,
the middle particle does not jump and remains at its original
position; see Figs. 1sed and 1sfd.

Hence,pa, pb, andpc are the free parameters of the model
s0øpa,pb,pcø1d. After each Monte Carlo step the time,t,
is increased bydt=1/N so that, at a time interval equal to 1,
every particle has, on average, one chance to be selected.
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Every time a particle jumps, the center of mass of the chain
moves 1/N of the distancea between adjacent lattice sites.
In the following we usea=1. The repetition of the described
procedure simulates the random motion of the chain in afree
spacesi.e., without taking into account the effects of poresd.
This model was introduced in Ref.f13g and the properties of
this free diffusion are summarized below.

In order to incorporate the porous media effect, the model
is modified as follows. We add to the latticeeffective barriers
with periodicity l as shown in Fig. 2. When an end particle is
adjacent to an effective barrier, rulesid is modified such that
the jumping probability adopts the valuehpa, where h s0
øhø1d is a new free parameter of the model. Forh=1, the
free diffusion case is recovered.

The simulation starts with an arbitrary chain configuration
and, following the rules of the model, many jumps are per-
formed to reach an equilibrium configuration. At this point
the origin of the timescale,t=0, is defined. The Monte Carlo
results were obtained averaging over more than 103 samples.

A cellular material can be envisioned as pores connected
by narrow necks, as depicted in Fig. 3. These necks act di-

minishing the probability for end particles to jump to neigh-
boring pores. An end particle not always finds the neck and
then the chain diffusivity is reduced. Conversely, once an
end particle crosses a neck, the rest of the chain can follow
the leading bead. Due to the crystalline character of zeolites,
necks, represented as effective barriers, are uniformely dis-
tributed.

We have introduced a one-dimensional model that re-
sembles a three-dimensional diffusion in a porous material.
Actually, the diffusing molecule describes a three-
dimensional movement within the pores. Thus, a low prob-
ability for the chain end to find a neck connecting two pores
is represented by the factorh in the one-dimensional model.
This is equivalent to say that there are a larger number of
microstates within the pore than within the neck.

We stress that the introduced effective barriers do not cor-
respond to real energy barriers. In particular, the parameterh
is not related to any energy. It reflects the difficulty that end
particles have to find the channel between pores in order to
move from a pore to the next one. In other words, the origin
of h is due to the effects of the configurational dynamics.
Clearly h plays the role of an effective parameter that takes
into account, in a simple way, the complicated dynamics that
a chain must perform in order to escape from a given pore
where is confined. This dynamics strongly depends on the
special kind of pores and chains that appear in real systems.
We emphasize that the present work is focused on the under-
standing of a basic mechanism that produces the window
effect and not to reproduce specific experimental results.
Thus the proposed mechanism is described with a Monte
Carlo model having a minimum of assumptions to keep it as
simple as possible.

In the Monte Carlo simulation the diffusion coefficient of
the chain center of mass,D, is calculated through

D = sdxc.m.d2/2t, s1d

where

sdxc.m.d2 = kfxc.m.std − xc.m.s0dg2l, s2d

xc.m. is the position of the center of mass and the brackets
denote the ensemble average.

For the case of free diffusionsh=1d, an analytical ap-
proximation of the diffusion coefficient can be obtainedf14g,

FIG. 1. Jumping probabilities for endfsad,sbdg and middle
fscd,dd, sed,sfdg particles. In casessed andsfd the middle particle, the
shaded one, cannot jump.

FIG. 2. Periodic effective barriers. The bars represent the effec-
tive barriers separated by a distancel. The jumping probability of
the left end particle ishpa.

FIG. 3. Schematics showing three cells connected by necks.
Molecule sad needs to find a neck to escape from the cell that
contains it. Moleculesbd diffuses freely as the neck does not include
any energy interaction with the diffusing molecule.
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D =
papbpc

Nspa + pbd2S1 +
2

N

pa + pb − pc

pc
D . s3d

In the limit N→` this approximation asymptotically con-
verges to the exact value ofD. For the special case when the
relationpa+pb=pc holds, Eq.s3d becomes

D =
papbpc

Nspa + pbd2 , s4d

which is the exact expression ofD for all values ofN, N
ù2 sfor more details see Ref.f14gd.

We will focus now on the general case with the effective
barriers present. We define as atrapped configurationa chain
configuration in which at least one of the end particles is
adjacent to an effective barrier and its nearest site is occupied
ssee Fig. 4d. In other words, in a trapped configuration the
jumping probability of one, or both ends, ishpa. We also
define thetrapped chain length ltr as the average length of
the chain for trapped configurations, and the adimensional
parameterl; l tr / l si.e., the ratio between the trapped chain
length and the period of the effective barriersd. As it will be
shown in the next section,l is an appropriate parameter to
describe the behavior of the diffusion coefficientD.

III. RESULTS AND DISCUSIONS

Let us start discussing the casepa+pb=pc where Eq.s4d
holds. In Fig. 5 the typical behavior of the diffusion coeffi-
cient, D, as a function of the adimensional parameterl is
shown. To compare with, the Monte Carlo results ofD for
the free diffusion case is also plotted.

For free diffusion,D monotonously decreases as a func-
tion of N; see Eq.s4d. To easily check that this is not the
behavior for the case of nonfree diffusion, in Fig. 6 we plot
dxc.m.

2 as a function of time,t, for N=5, 6, 7, and 8sand the
same values ofpa, pb, pc, andh as those used in Fig. 5d. The
values ofD are proportional to the slopes of the straight lines
shown in Fig. 6, see Eq.s1d, and then it is evident that the
error bars in the values ofD are much smaller than the am-
plitude of the oscillation shown in Fig. 5. In fact, error bars
in Fig. 5 would be smaller than the symbols used.

Figure 5 clearly indicates that the chain diffusivity pre-
sents local maxima around integer values ofl. This non-
standard behavior shows the so-calledwindow effectwhose

theoretical explanation constitutes an open problem nowa-
daysf5g. Other results, not shown in the present work, indi-
cate that in our model the window effect is not very sensitive
to the parameterspa, pb, and pc, but, as expected, monoto-
nously increases as the value ofh is reduced. For example,
the ratio between diffusivities corresponding to the first
mamimum and the second minimum is,3.2 for h=0.1 and
,15 for h=0.01.

In order to grasp the origin of the window effect in our
model, we will analyze the chain dynamics in detail. In Fig.
7, xc.m. is plotted as function of time for chains withN=4, 7,
and 10 particles. The dashed horizontal straight lines repre-
sent the position of the effective barrierssl =10d. The values
of the parameterspa, pb, pc andh are the same in all cases.
The values ofN have been chosen in order to have three
different relations between the trapped chain length,l tr, and
l : l tr , l, for N=4; l tr > l, for N=7; and l , l tr ,2l, for N
=10. Note that for long periods of time the chain withN

FIG. 4. Trapped and nontrapped configurations. Some examples
of trapped and nontrapped chain configurations are shown.

FIG. 5. The diffusion coefficient of the center of mass,D sfull
circlesd, as a function of the adimensional parameterl. The Monte
Carlo results were obtained usingpa=0.83,pb=0.17,pc=1, andh
=0.1. For comparisonD sopen squaresd for the free diffusion case is
also plottedsi.e., pa=0.83,pb=0.17, pc=1, andh=1d. Since in this
casel has no meaning,D is plotted against the corresponding val-
ues ofN for the nonfree diffusion case. The solid lines have been
drawn to guide the eye. The inset shows the behavior ofDN. The
straight line corresponds to the analytical results ofDN obtained
from Eq. s4d for the free diffusion case.

FIG. 6. The mean square displacement of the center of mass,
sdxc.m.d2, against time for chains ofN=5, 6, 7, and 8 particles. The
values for the parameters of the model arepa=0.83, pb=0.17, pc

=1, andh=0.1. The straight lines correspond to the least squares fits
of the data.
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=4 appears confined between two adjacent barriers, and the
chain withN=10 is confined between barriers separated by a
distance 2l. Interestingly, forN=7, xc.m. behaves very simi-
larly to a standard random walksas in the case of free diffu-
siond. That is, the presence of the effective barriers seems
almost not to affect the movement of the center of mass.

For a quantitative analysis we define theescape time, tesc,
as the mean time needed for a chain to cross one of the given
barriers starting from a given configuration. We say that a
chain crosses a barrier if the adjacent particle to an end par-
ticle passes the barrier and both particles remain together;
see Fig. 8. In the simulations we use a compressed chain
si.e., a chain with length equal toNd centered between two
consecutive barriers as the initial configuration. Note that the
definition of the escape time is arbitrary because there are
many ways to consider when a chain crosses a barrier and to
select the barrier that must be crossed. Also, other initial
configurations can be chosen. However, the general conclu-
sions are not expected to depend on the specific definition of
the escape time.

In Fig. 8 we depict two possible situations in which bar-
riers confine a chain. Confining barriers are separated by a

distancelb=3l, casesbd, and by a distancelb= l, casescd.
Casescd can be used forlø1, and casesbd for lø3. Figure
9 shows the escape time as a function ofl using the above-
mentioned two sets of barriers of confinement with the same
values of free parameters as those used in Fig. 5. A strong
agreement between the data of Figs. 5 and 9 is clearly seen,
in the sense that the local maxima in the diffusion coefficient
correspond to the location of local minima in the escape
times.

We will offer a qualitative explanation for the escape time
dependence on the chain length forlø1 andlb= l. It is ob-
served that forl,0.5 the escape time is larger than forl
,1 ssee the inset of Fig. 9d. When l,1 the chain can be
confined between two consecutive barriers with both end
particles being close to barriers. Thus, both end particles are
very frequently trying to cross the barriers. Conversely, for
shorter chainssl,0.5d only one end particle can be adjacent
to a barrier. Then, sinceh,1 it is very likely for a l,0.5
chain to diffuse away from the adjacent barrier. In other

FIG. 7. Plots of the position of the center of mass,xc.m. as
function of time,t, for pa=0.83,pb=0.17,pc=1, andh=0.1, l =10,
and for chains with three different values ofN: N=4 sad, N=7 sbd,
and N=10 scd. Dashed straight lines represent the positions of the
effective barriers. The corresponding values ofl are l>0.6, for
N=4 si.e., l tr , ld; l> l, for N=7 si.e., l tr >1d; l>1.6, for N=10
si.e., l , l tr ,2ld.

FIG. 8. Definition of the escape time,tesc. sad An example of a
chain escaping to the right. According to our definition, the chain
crosses the right barrier when the shaded particle performs the jump
indicated by an arrow. Insbd and scd two sets of confining barriers
are shown. The separation between confining barriers,lb, are 3l sbd
and l scd. With dashed lines initial configurations are depicted.
Chains escape from the corresponding confinement barriers when
one of the jumping events indicated by arrows occurs. The
definition of the time escape is applied forlø3, casesbd, and l
ø1, casescd.

FIG. 9. The escape time,tesc, as a function ofl for lb=3l; see
Fig. 8sbd. The inset shows the behavior oftesc for lb= l; see Fig.
8scd. In both cases data correspond topa=0.83,pb=0.17, pc=1, h
=0.1, andl =10. Solid lines were drawn as a guide to the eye.
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words, the chain spends time moving between barriers before
a successful attempt to cross a barrier takes place; see also
Fig. 7sad.

For lb=3l, chains withl,1 or l,0.5 have similar be-
haviors to those forlb= l ssee Fig. 9d because when the chain
escapes from the central barriers confinementsseparated by a
distanceld, freely diffuses until being confined between other
barrierssor it returns to the central initial positiond. This type
of argument can be used to explain the behavior oftesc for
1,l,3, shown in Fig. 9. By comparing Fig. 7sad and the
inset of Fig. 9, it seems thatxc.m. spends more time thantesc
to escape from being between two consecutive barriers. This
implies that, after an adjacent particle to an end particle
crosses a barrier, very likely the chain returns to be confined
again between the same barriers.

The above reasoning can be easily extended to other val-
ues of l. It is concluded that local minima in the escape
timessand then, local maxima in the diffusion coefficientDd
appear when the mean length of the trapped chains is close to
a multiple integer of the barriers period.

IV. CONCLUSIONS

In previous works the window effect was explained based
on particle-pore and particle-particle interactionssRefs. f8g
andf9gd. In contrast to the explanations presented before, we
show that the window effect that we observe is not due to a
net force acting on the diffusing molecule. The escape time
decreasessor, equivalently, the diffusivity increasesd as the
length of the chain,l tr, becomes equal to an integer of the
distance between effective barriers. In these cases, the chain
overcomes effective barriers more easily because the number
of attempts per unit time becomes larger. This is another
source for the appearance of the window effect, introduced
with a model as simple as possible that includes only the
most relevant rules.

ACKNOWLEDGMENTS

This work was partially supported by the CONICETsAr-
gentinad and the ANPCyTsGrant No. 03-08431, Argentinad.

f1g N. Y. Chen, T. F. Degman, Jr., and C. Morris Smith,Molecular
Transport and Reaction in ZeolitessVCH, New York, 1994d.

f2g J. Kärger and D. M. Ruthven,Diffusion in Zeolites and Other
Microporous SolidssWiley, New York, 1992d.

f3g K. Hahn, J. Kärger, and V. Kukla, Phys. Rev. Lett.76, 2762
s1996d.

f4g D. S Sholl and K. A. Fichthorn, Phys. Rev. Lett.79, 3569
s1997d.

f5g H. Jobic, J. Kärger, and M. Bee, Phys. Rev. Lett.82, 4260
s1999d.

f6g L. A. Clark, G. T. Ye, and R. Q. Snurr, Phys. Rev. Lett.84,
2893 s2000d.

f7g R. L. Gorring, J. Catal.31, 13 s1973d.

f8g E. Ruckenstein and P. S. Lee, Phys. Lett.56A, 423 s1976d.
f9g J. M. Nitsche and J. Wei, AIChE J.37, 661 s1991d.

f10g D. Dubbeldam, S. Calero, T. L. M. Maesen, and B. Smit, Phys.
Rev. Lett. 90, 245901s2003d.

f11g D. Dubbeldam and B. Smit, J. Phys. Chem. B107, 12138
s2003d.

f12g D. Dubbeldam, S. Calero, T. L. M. Maesen, and B. Smit, An-
gew. Chem., Int. Ed.42, 3624s2003d.

f13g S. E. Guidoni, H. O. Mártin, and C. M. Aldao, Eur. Phys. J. E
7, 291 s2002d.

f14g S. E. Guidoni, H. O. Mártin, and C. M. Aldao, Phys. Rev. E
67, 031804s2003d.

WINDOW EFFECT IN A DISCRETIZED MODEL FOR… PHYSICAL REVIEW E 71, 021103s2005d

021103-5


